Perkins, D. D. and T. Ishikawa. Locus designations

for irreparable temperature-sensitive mutants.

Irreparable temperature-sensitive mutants have been mopped at two new loci, bringing to eight the number of mopped conditional lethals of this type. It is proposed to call the new loci "n-7 and "n-8, and to redesignate the six previously mopped irreparable temperature-sensitive

genes as shown in Table 1. "n-7 and -8 originated in experiments of Inoue and Ishikawa (1970 Japan. J. Genet. 45: 357) at survivors of filtration enrichment of UV-treated conidia from wild type 74A. The original "n-8 isolate contained reciprocal translocation T(I;V)T27M9 from which it has been separated. 153M50 was originally called un(31) and T27M9 was coiled "n(I) by Inoue and Ishikawa.

Table 1. loci Of irreparable temperature-sensitive genes.

Proposed locus symbol	Isolation No.	Former locus symbol	Linkage group and arm	Reference for location
<u>un-1</u>	44409	<u>un (44409)</u>	IR	Perkins_et al. 1969 Genetica 40:247.
<u>un-2</u>	46006	un (46006)	IC	Perkins_et al. 1969
un-3	55701	un (55701)	IL	Howe 1962 Microb. Genet. Bull. 18:12.
<u>un-4</u>	66204	un (66204)	٧1L	Stadler 1956 Genetics 41:528.
<u>un-5</u>	b39	un (b39)	IL	Kuwana 1960 Japan, J. Gene+. 35:49, Perkins_et a <u>l</u> . 1969.
"n-6	83106	"n (83106)	IIIR	Perkins_et a[. 1969
""-7	T53M50		IR	
un-8	T27M9		IVR	

The newly proposed symbols in Table I have the advantage of brevity and of consistency with other series of "mimic" loci that share a common phenotype. When precise information becomes available regarding the characteristic defect of a particular "n mutant, a decision con be made whether to replace the present symbol with one that is more explicit.

Table 2. Mop locations of new un mutants.

		Numbers			
Mutant	Sequence and % recombination	Parental	Singles	Singles 2	Doubles 1,2
<u>"n-7</u> (T53M50)	<u>un-7</u> (4) <u>aur</u> (22) <u>os-1</u>	44	2	13	0
	act-I (12) a[-] (1) un-7	74	10	1	0
<u>"n-8</u> (T27M9)	cys-10 (47) "n-8 (5) col-4	39	38	4	0
	"n-8 (0) pyr-1 centromere 1VR→VIR)ALS159 " n - (by duplication - coverage)	47 <u>8</u>	0		

Linkage relations of the new mutants are summarized in Table 2. The isolation number for the al-1 allele is ALS4. "n-8 is known to be right of the centromere in IV because it is heterozygous in duplications from T(IVR-VIR)ALS159. = ~ = Department of Biological Sciences, Stanford University, Stanford, California 94305 and Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan.