Strain: Neurospora crassa

<- Back

FGSC #6667

Mutant Type

Genus: N

reporting_genes: cot-1;al-3;csp-2

species: Neurospora crassa

allele: C102(t);RP100;UCLA101

stock: 9392

glasgow:

mutagen:

Depositor: DDP

Link Group: IVR;VR;VIIL

MT: a

Species No: 10

gene_back: SL

oppmt: 6666

trans:

ref1:

ref2:

site:

country:

ksudc_link: https://digital.lib.k-state.edu/item/neurospora-crassa/fgsc-6667

ksudc_link_html: https://digital.lib.k-state.edu/item/neurospora-crassa/fgsc-6667 ↗

Genes

Locus Cultural Requirements Link Group Type
csp-2VIIL. Linked to thi-3 (<1%), probably to the right. Left of T(T54M40) (972, PB). Conidia fail to separate and become airborne. Cultures on agar readily scored by the tap test. Resembles csp-1. Conidia are freed in water suspension long after induction of aerial growth and at only 1/100 the concentration of the wild type. A csp-1;csp-2double mutant releases no detectable free conidia under the same conditions (972). Most csp-2alleles complement csp-1 in forced heterokaryons to form the wild-type number of free conidia (972), but csp-2(UCLA102) does not (969). Conidiating colonies of the csp-2;sn cr-1 strain on replica plates can be overlayered without the conidia being spread (744); photograph (747).VIILB
al-3VR. Between his-1 and inl (1%) (1119, PB). Carotenoids deficient (398). Reported to lack geranylgeranyl pyrophosphate synthetase activity and is blocked in soluble fraction, consistent with lesion between isopentenyl pyrophosphate and geranylgeranyl pyrophosphate (445), but can still produce farnesyl pyrophosphate (445) and steroids (398). (See Fig. 9.) This evidence contradicts in vivo labeling results that indicate a lesion between prephytoene pyrophosphate and phytoene (572). Strains carrying allele Y234M470 (al-3ros), formerly called rosy (49), become partially pigmented but are readily distinguished from the wild type. ylo-1 can be scored in combination with al-3ros (Y234M470) (PB). Strains carrying other alleles (e.g., RP100) (1119) are white with a trace of pink pigment. Biosynthetic pathway for carotenoids. It is thought that the same prenyl transferase catalyzes all the steps from dimethylallyl pyrophosphate to geranylgeranyl pyrophosphate (444; R.W. Harding, personal communication), and it has been proposed that a separate prenyl transferase converts dimethylallyl pyrophosphate to farnesyl pyrophosphate for sterol synthesis (445). The conversion of phytoene to the various carotenoid pigments involves a series of dehydrogenations, cyclizations, and other reactions. There must also be a cis/trans isomerization analogous to that found in tomato (842). The sequence of some of these steps is still uncertain; the pathway must branch, and there may be alternate routes to some of the products. See references 228, 443, 444, 842 and citations therein for proposed sequences. al-1 is probably blocked in phytoene dehydrogenase (398). It is not known whether this enzyme catalyzes the whole series of dehydrogenations. al-2 is reported blocked between geranylgeranyl pyrophosphate and phytoene (445) and between prephytoene pyrophosphate and phytoene (572). al-3 is alternately reported blocked between isopentenyl pyrophosphate and geranylgeranyl pyrophosphate (445) and between prephytoene pyrophosphate and phytoene (572), but it is not blocked in the production of farnesyl pyrophosphate or sterols (398, 445). ylo-1 is evidently blocked in a late step, probably either in the conversion of lycopene to 3,4-dehydrolycopene or in the conversion of either torulene or gamma-carotene to neurosporaxanthin (see citations in reference 398).VRB
cot-1IVR. Between pan-1 (2%) and his-4 (1 to 6%) (692, 812, 816). Extremely colonial at 34°C, but completely normal growth, morphology, and fertility at 25°C and below. Linear growth is maximum at 24°C (374). Becomes colonial at 32°C; colonies from ascospores or conidia are viable and continue to grow slowly with dense branching, but do not conidiate. They quickly resume normal growth when shifted to a permissive temperature (692, 1068). Recessive in duplications (808); apparent dominance in heterokaryons (374) may have resulted from a shift in nuclear ratios. Used in studies of septation and branching (202), growth-inhibiting mucopolysaccharide (878, 879), and sulfate transport (641). Cell wall analysis (374). Growth is stimulated by lysine or arginine (0.1 mM) on glucose media at high temperatures (615). Because of high viability and tightly restricted growth at restrictive temperatures and normality at 25°C, cot-1 mutants have valuable technical applications. For example, crosses homozygous for cot-1 have been used in combination with sorbose for experiments with rec genes, where high-density ascospore platings are required for precise quantitative analysis of intralocus recombination (e.g., references 165, 997, and 1070). In another application, when shifted up after initial growth at the permissive low temperature, cot-1hyphae assume a "bottle brush" appearance with small side branches (692). This has been used to select uvs mutants by subsurface survival on UV-irradiated plates containing p-aminobenzoic acid (938; D.E.A. Catcheside, personal communication). cot-1 conidia or ascospores from cot-1 x cot-1crosses are used for replication in a protocol involving transfer by filter paper (615). For suppressors of cot-1, see gul.IVRB

Neurospora Crassa Wikipedia

Back to search results